

Midterm 2 Solutions

Each question is worth 5 points.

Problem 1 For each $n \in \mathbb{N}$, let a_n be the number of permutations in S_n whose cube is the identity permutation. Prove combinatorially that $a_{n+3} = a_{n+2} + (n+2)(n+1)a_n$ for every $n \in \mathbb{N}$.

Solution. For each $n \in \mathbb{N}$, let T_n be the set of permutations in S_n whose cube is the identity. Let $(c_1 c_2 \dots c_\ell)$ be a cycle of length greater than 1 in the disjoint cycle decomposition of $\pi \in T_n$. Note that $\ell \neq 2$ as otherwise $\pi^3(c_1) = c_2$, and this cannot happen because π^3 is the identity permutation. In addition,

$$c_3 = \pi(c_3) = \pi^2(c_2) = \pi^3(c_1) = c_1,$$

which implies that $\ell = 3$. Thus, every cycle in the disjoint cycle decomposition of π has length either 1 or 3. The subset of T_{n+3} whose elements have $(n+3)$ as a cycle is in bijection with T_{n+2} , where the bijection consists in dropping the cycle $(n+3)$. On the other hand, we can construct any permutation in T_{n+3} in which the cycle containing $n+3$ has length greater than one (that is, has length 3) as follows: construct the three-cycle $(i \ j \ n+3)$ containing $n+3$ in $(n+2)(n+1)$ different ways (choosing an ordered pair (i, j) with $i \neq j$ from the set $[n+2]$), and then make the set $[n+2] \setminus \{i, j\}$ into a cycle type decomposition in a_n different ways. Hence $a_{n+3} = a_{n+2} + (n+2)(n+1)a_n$, as desired. \square

Problem 2 Suppose that we have n distinguishable standard dice. A roll of the n dice is called complete if each of the numbers 1, 2, 3, 4, 5, 6 appears on the face of at least one die. For instance, if $n = 7$, then the roll $(5, 3, 1, 2, 4, 5, 6)$ is complete while the roll $(3, 5, 4, 3, 5, 1, 1)$ is not complete because 2 and 6 do not appear on any face. Let d_n be the number of complete rolls of the n dice. It is clear that if $n \in [5]$, then $d_n = 0$. Find a formula for d_n for $n \geq 6$ (summation signs are allowed).

Solution. For each $j \in [6]$, let A_j be the set of rolls of the n dice in which j does not show (in any of the n faces up). Observe that if S is a k -subset of $[6]$, then $|\bigcap_{j \in S} A_j| = (6-k)^n$. Then it follows from the Sieve Method that

$$\begin{aligned} \left| \bigcup_{n=1}^6 A_n \right| &= \sum_{\emptyset \neq S \subseteq [6]} (-1)^{|S|+1} \left| \bigcap_{j \in S} A_j \right| = \sum_{k=1}^6 \sum_{S \subseteq [6]: |S|=k} (-1)^{|S|+1} \left| \bigcap_{j \in S} A_j \right| \\ &= \sum_{k=1}^6 \binom{6}{k} (-1)^{k+1} (6-k)^n. \end{aligned}$$

It is clear that a roll is complete precisely when it does not belong to any of the sets A_j . Since there are a total of 6^n possible outcomes for the rolls of the n dice, the number of complete rolls is

$$6^n - \left| \bigcup_{n=1}^6 A_n \right| = 6^n - \sum_{k=1}^6 \binom{6}{k} (-1)^{k+1} (6-k)^n = \sum_{k=0}^6 \binom{6}{k} (-1)^k (6-k)^n.$$

□

Problem 3 Let $(a_n)_{n \geq 0}$ be the sequence satisfying that $a_{n+1} = (n+1)a_n + 2 \cdot (n+1)!$ for every $n \geq 0$ and $a_0 = 0$.

1. (3 pts) Find a closed formula (no summation signs allowed) for the exponential generating function of $(a_n)_{n \geq 0}$.
2. (2 pts) Find an explicit formula for a_n .

Solution. 1. Let $F(x) = \sum_{n=0}^{\infty} a_n \frac{x^n}{n!}$ be the exponential generating function of $(a_n)_{n \geq 0}$. From $a_0 = 0$ and $a_{n+1} = (n+1)a_n + 2 \cdot (n+1)!$, we deduce that

$$\begin{aligned} F(x) &= \sum_{n=0}^{\infty} a_{n+1} \frac{x^{n+1}}{(n+1)!} = \sum_{n=0}^{\infty} (n+1)a_n \frac{x^{n+1}}{(n+1)!} + 2 \sum_{n=0}^{\infty} (n+1)! \frac{x^{n+1}}{(n+1)!} \\ &= x \sum_{n=0}^{\infty} a_n \frac{x^n}{n!} + 2x \sum_{n=0}^{\infty} x^n = xF(x) + \frac{2x}{1-x}. \end{aligned}$$

Therefore $F(x) = \frac{2x}{(1-x)^2}$.

2. In order to find an explicit formula for a_n , we use the generalized binomial theorem:

$$\begin{aligned} F(x) &= 2x(1-x)^{-2} = 2x \sum_{n=0}^{\infty} \binom{-2}{n} (-x)^n \\ &= 2x \sum_{n=0}^{\infty} (-1)^n \frac{(-2)(-3) \cdots (-2-n+1)}{n!} x^n \\ &= 2x \sum_{n=0}^{\infty} \frac{(n+1)!}{n!} x^n = 2 \sum_{n=0}^{\infty} (n+1)x^{n+1} \\ &= \sum_{n=1}^{\infty} 2nx^n. \end{aligned}$$

Thus, $a_n/n! = 2n$, which means that $a_n = 2n \cdot n!$.

□

Problem 4 For each $n \in \mathbb{N}$, let f_n be the number of ways to split a line of n soldiers into nonempty sub-intervals, create a platoon out of each resulting sub-interval, and choose a commander in each platoon. Assume that $f_0 = 1$. Find a closed formula for the (ordinary) generating function of $(f_n)_{n \geq 0}$.

Solution. Consider the sequence $(a_n)_{n \geq 0}$, where $a_0 = 0$ and a_n is the number of ways to create a platoon with a leader out of a sub-interval consisting of n soldiers. If $A(x)$ is the (ordinary) generating function of $(a_n)_{\geq 0}$, we obtain that

$$A(x) = \sum_{n=1}^{\infty} nx^n = x \sum_{n=0}^{\infty} nx^{n-1} = x \frac{d}{dx} \left(\sum_{n=0}^{\infty} x^n \right) = x \frac{d}{dx} \left(\frac{1}{1-x} \right) = \frac{x}{(1-x)^2}.$$

Let $B(x)$ be the (ordinary) generating function corresponding to building the trivial structure (that is, doing nothing) on the set of all created platoons. Then

$$B(x) = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$$

Hence if $F(x)$ is the ordinary generating function of $(f_n)_{n \geq 0}$, then it follows from the composition theorem for (ordinary) generating functions that

$$F(x) = \sum_{n=0}^{\infty} f_n x^n = B(A(x)) = \frac{1}{1 - A(x)} = \frac{(1-x)^2}{(1-x)^2 - x}.$$

□